Dynamics of Synoptic Eddy and Low-Frequency Flow Interaction. Part I: A Linear Closure
نویسندگان
چکیده
The interaction between synoptic eddy and low-frequency flow (SELF) has been recognized for decades to play an important role in the dynamics of the low-frequency variability of the atmospheric circulation. In this three-part study a linear framework with a stochastic basic flow capturing both the climatological mean flow and climatological measures of the synoptic eddy flow is proposed. Based on this linear framework, a set of linear dynamic equations is derived for the ensemble-mean eddy forcing that is generated by anomalous time-mean flows. By assuming that such dynamically determined eddy-forcing anomalies approximately represent the time-mean anomalies of the synoptic eddy forcing and by using a quasi-equilibrium approximation, an analytical nonlocal dynamical closure is obtained for the two-way SELF feedback. This linear closure, directly relating time-mean anomalies of the synoptic eddy forcing to the anomalous time– mean flow, becomes an internal part of a new linear dynamic system for anomalous time–mean flow that is referred to as the low-frequency variability of the atmospheric circulation in this paper. In Part I, the basic approach for the SELF closure is illustrated using a barotropic model. The SELF closure is tested through the comparison of the observed eddy-forcing patterns associated with the leading low-frequency modes with those derived using the SELF feedback closure. Examples are also given to illustrate an important role played by the SELF feedback in regulating the atmospheric responses to remote forcing. Further applications of the closure for understanding the dynamics of low-frequency modes as well as the extension of the closure to a multilevel primitive equation model will be given in Parts II and III, respectively.
منابع مشابه
Dynamics of Synoptic Eddy and Low-Frequency Flow Interaction. Part III: Baroclinic Model Results
In this three-part study, a linear closure has been developed for the synoptic eddy and low-frequency flow (SELF) interaction and demonstrated that internal dynamics plays an important role in generating the leading low-frequency modes in the extratropical circulation anomalies during cold seasons. In Part III, a new linearized primitive equation system is first derived for time-mean flow anoma...
متن کاملEddy-Induced Instability for Low-Frequency Variability
Synoptic eddy–mean flow interaction has been recognized as one of the key sources for extratropical lowfrequency variability. In this paper, the underlying dynamics of this interaction are examined from the perspective of a synoptic eddy-induced dynamic instability. To delineate this instability, a barotropic model is used that is linearized with respect to a stochastic basic flow prescribed wi...
متن کاملClosures for Ensemble-Mean Linear Dynamics with Stochastic Basic Flows
This paper demonstrates the validity of a second-order closure for the ensemble-mean dynamics using the approach of direct numerical ensemble simulations of a linear barotropic model with stochastic basic flows. For various configurations of the stochastic basic flow and external forcing, the deterministic solutions under the second-order closure capture, with remarkable accuracy, the ensemble ...
متن کاملDynamics of Synoptic Eddy and Low-Frequency Flow Interaction. Part II: A Theory for Low-Frequency Modes
Amidst stormy atmospheric circulation, there are prominent recurrent patterns of variability in the planetary circulation, such as the Antarctic Oscillation (AAO), Arctic Oscillation (AO) or North Atlantic Oscillation (NAO), and the Pacific–North America (PNA) pattern. The role of the synoptic eddy and low-frequency flow (SELF) feedback in the formation of these dominant low-frequency modes is ...
متن کاملInteractions between the tropical ISO and midlatitude low-frequency flow
In this study, we investigate the interaction between the tropical Intraseasonal Oscillation (ISO) and midlatitude atmospheric low-frequency variability, using observational data and numerical models, with a special emphasis on the role of the synoptic eddy feedback. A statistical closure for the synoptic eddy-to-low frequency flow feedback is constructed, based on a singular value decompositio...
متن کامل